
Automation Engine

Scripting in Automation Engine

Automation Engine

ii

Contents

1. Scripting... 3

2. Automation Engine Script Runner... 4

3. Installing Script Runner.. 5

4. Configuring Script Runner...7

5. Scripting for Script Runner On Mac OS...8

5.1 Using AppleScript on Script Runner... 8

5.1.1 Using AppleScript On Script Runner: A Sample Case..11

5.2 Using Shell Script on Script Runner...14

6. Scripting for Script Runner on Windows... 18

6.1 Using Windows Script on Script Runner.. 18

6.1.1 Using Windows Script On Script Runner: A Sample Case..21

6.2 Using Batch File for Scripting on Windows...25

7. Using ExtendScript on Script Runner(On MacOS/Windows).. 28

7.1 Using ExtendScript on Script Runner: A Sample Case.. 31

8. Appendix : Script Samples... 33

8.1 AppleScript Code Samples...33

8.2 Shell Script Code Sample...34

8.3 Windows Script Code Samples.. 35

8.4 Batch File Code Sample..36

8.5 ExtendScript Code Samples.. 36

1
Automation Engine

3

1. Scripting

You can write Scripts (small programs) to automate the execution of certain tasks during a workflow.
Writing and using such scripts is called scripting. You need the Script Runner application to link
scripting with your Automation Engine workflows. You can automate actions from Adobe applications
(e.g. Illustrator, Photoshop, InDesign) and third party tools (e.g. Alwan) using Scripts.

Some of the instances where scripting is useful are given below:

• to ensure file format integrity (standardization) for workflow inputs.
• to use standardized PDF as input during the Preflight process.
• to automate Adobe Illustrator, Photoshop, InDesign and InDesign Server via ExtendScript on Mac

Os and Windows.

Supported Script Types

• AppleScript (on Mac OS)
• ShellScript (on Mac OS)
• Batch files (on Windows)
• Windows Script (VBScript, JScript) (on Windows)
• ExtendScript (on Mac OS and Windows)

More info on Scripting :Getting Started with Scripting

More info on Scripting in workflows:Use case: Scripting

2
Automation Engine

4

2. Automation Engine Script Runner

The Automation Engine(AE) Script Runner is a standalone AE server component which runs scripts
on behalf of AE. You can add customization to your workflow by adding a Run Script task. This
task will run on the Automation Engine server while the execution of the script will be done on the
Script Runner application which can be installed on Windows or Macintosh. When you launch the
workflow, the following will take place:

1. The Run Script task sends a request to run the specified script.
2. The Script Runner processes the request accordingly and runs the script.
3. The Script Runner sends the results back to the server.
4. The workflow will continue with the outputs from this task.

3
Automation Engine

5

3. Installing Script Runner

Scripting helps to customize some steps in your work flows. You can achieve this by adding a Run
Script task to the work flow where you want customization. The Automation Engine will use Script
Runner to run scripts which are stored either locally or on a server. When you launch the workflow in
Automation Engine, the Script Runner runs the script which contains the main function incorporating
the inputs from the Run Script task, output folder and some optional script parameters from the Run
Script ticket. The workflow in Automation Engine continues with the contents of the output folder
which contains the outputs from the script. To achieve this, you need to do the following steps :

1. Download Automation Engine Script runner. You can download it via the web access to the
Automation Engine Server. Client Apps > Tools .

• On Mac OS, open the ‘dmg’ file after downloading the Script Runner which contains the
installer package. Double-click to start the installation.

• On Windows, double-click the downloaded installer to start the installation.

2. Install the Script Runner by following the instructions in the Installshield Wizard/Assistant and
make sure it is running in your computer.

• On Windows, open Start > All Programs > Esko > Automation Engine Script Runner >
Preferences .

• On Mac OS, open Applications > Automation Engine Script Runner > Esko > Automation
Engine Script Runner > Script Runner Preferences .

3
Automation Engine

6

In the Script Runner Preferences window, you can:

• check if the Script Runner is actually running
• start / stop the Script Runner
• enable(disable) Start at login
• view and change the port the Script Runner is communicating with
• view and change the default folders for scripts

4
Automation Engine

7

4. Configuring Script Runner

You can configure your Script Runner to your Automation Engine server. This computer must have
the Script Runner running.

For more information on installing a Script Runner, refer to Getting Started with Scripting

1. Choose Tools > Configure .

2. Choose Scripts from the categories on the left. Choose File > New .

3. Give a suitable name to the Script Runner by choosing File > Rename

4. Enter the computer name or IP address of the Script Runner computer in the Host field.

5. Enter the Port used to connect this computer to your Automation Engine server.

By default, this is 1983.

6. Click the Test Connection button. If you have configured the Scrpt Runner successfully, you will
see either all the scripts available on the Script Runner or a message 'No scripts available'.

5
Automation Engine

8

5. Scripting for Script Runner On Mac OS.

A Script Runner on Mac OS supports AppleScript and Shell Script to automate operations.

Note:

Sample scripts are provided as-is with no warranty of fitness for a particular purpose. These scripts
are solely intended to demonstrate techniques for accomplishing common tasks. Additional script
logic and error-handling may need to be added to achieve the desired results in your specific
environment.

It is up to the user to verify that his intended use of the offered automation functionality is compliant
with any third party license agreement and/or other restrictions applicable to any non-Esko products.

5.1 Using AppleScript on Script Runner

AppleScript is a scripting language that makes direct control of scriptable applications and of many
parts of the Mac OS possible. An AppleScriptable application is one that makes its operations and
data available in response to AppleScript messages, called Apple events.

We recommend using AppleScript because:

• it is highly integrated into the Mac OS
• it is supported by a lot of third party applications
• it has a high level of accessibility for scripting beginners

1. Open the AppleScript Editor and add following code.

Options Description

main This function will be called by the Script
Runner. Only the code in this main function
gets executed.

inputs The first argument of the main function: a list
of input file paths (type: list of strings).

5
Automation Engine

9

Options Description

outputFolder Second argument of the main function: the
folder where AE expects the script’s result files.
AE will continue the flow with the files you write
in this folder. If you leave this folder empty, AE
will continue the flow with the inputs of the Run
Script task (type: string).

params Third argument of the main function: additional
script parameters injected into the script via
the Run Script ticket (type: list of strings).

log Extra log information in the Run Script task
details

return “OK” This will communicate with the Run Script task
that everything went fine. Other possibilities
are return “Warning” and return
“Error”.

2. Save this code as an AppleScript text file in the Script Runner’s AppleScript folder (default: /
Library/Scripts/Esko/AppleScript) or in the Automation Engine AppleScript folder.

Note: Script Runner supports ‘Text’ format. Therefore it is essential to change the file format to
‘Text’.

3. You can add following code to test this script locally in the AppleScript Editor. Save the file and
click Run to execute the script.

5
Automation Engine

10

Notice the ‘Hello, World!’ and ‘OK’ result in the event log. The Script Runner does not attend to
the test code in your script. It will execute the contents of the main function and ignore the rest.
Therefore, you can keep your test code for future local testing.

4. Open the Automation Engine Pilot. Go to Files view where you can select a file and open a New
Task. Choose the Run Script task, modify its settings and launch the task.

5
Automation Engine

11

Read more in Run Script

Note that the ‘Hello, World!’ in the task details and ‘OK’ state are corresponding with log
“Hello, World!”’ and ‘return “OK”’ in the script.

5.1.1 Using AppleScript On Script Runner: A Sample Case

In this example, we use AppleScript to copy every input file with a size smaller than the size specified
in the script parameters to the output folder.

We can use inputs, outputFolder and params in the AppleScript to achieve our objective. First,
we demonstrate how to duplicate files without the size restriction and then proceed with the actual
case.

1. Open the AppleScript Editor and add the code given below. This code is aimed to iterate through
the list of inputs. It enables you to handle the inputs one by one, via the ‘input’ variable.

5
Automation Engine

12

2. You can modify the Script as given below to duplicate the files to a specified output folder
without size restrictions. Save this code as an AppleScript text file in the default AppleScript
folder of Script Runner(default: /Library/Scripts/Esko/AppleScript) or in the Automation Engine
AppleScript folder.

3. Add the file size check in the code as given below. This will duplicate the file when the input file
size is smaller than the maximum size from the script parameters. If this condition is not met it
will add an entry in the log and there will be "Warning". Save the file.

5
Automation Engine

13

4. Open the Automation Engine Pilot. Go to Files view where you can select the files to be copied
and open a New Task. Choose the Run Script task, modify its settings and launch. This modified
ticket will duplicate every selected file which is smaller than 10MB to the current job’s Script
Output folder. In this example, we excuted this task for two files(Blairon.pdf: 22MB and Dansk
Droge.pdf: <1MB).

5
Automation Engine

14

‘Dansk Droge.pdf’ is duplicated into the job’s Script Output folder. ‘Blairon.pdf’ was too big to
duplicate (> 10MB). Therefore, the task ended in ‘Warning’ state and added an entry in the task
details.

5.2 Using Shell Script on Script Runner

In this example, we use a Shell Script to copy every input file with a size smaller than the specified
size in the script parameters to the output folder.

1. Open a text editor and add following code. When the Script Runner executes this code, $1 (the
script’s first argument) will contain a string of input file paths separated by :. The code splits up
the concatenated file paths into a real list. This helps to iterate through the list and handle the
Run Script task’s inputs one by one.

5
Automation Engine

15

2. Write and save the code as below. This script copies the input to the output folder if the input’s file
size is smaller than the maximum size from the script parameters. If the size of the file is bigger, it
adds an entry in the log and makes sure the task ends in ‘Warning’ state (via exit value ‘1’). Save
this code as a text file to the Script Runner's Shell folder (default: /Library/Scripts/Esko/Shell)
or to the Automation Engine Shell folder.

5
Automation Engine

16

$1 First shell script argument: the Run Script
task’s inputs. A string of input file paths,
separated by ‘:’.

$2 Second shell script argument or output
folder: This is the folder where Automation
Engine expects the script’s result files. AE
will continue the flow with the files you write
in this folder. If you leave this folder empty,
AE will continue the flow with the inputs of
the Run Script task.

$3, $4, $5, … Remaining shell script arguments:
additional script parameters which you
can inject into the script via the Run Script
ticket.

exitValue Ending Status of the task

0 OK

1 Warning

2 Error

3. Open the Automation Engine Pilot. Go to Files view where you can select a file and open a
New Task. Choose the Run Script task, modify its settings and launch. This modified ticket will
duplicate every selected file which is smaller than 10MB to the current job’s Script Output folder. In
this example, we excuted this task for two files(Blairon.pdf: 22MB and Dansk Droge.pdf: <1MB).

‘Dansk Droge.pdf’ is duplicated into the job’s Script Output folder. ‘Blairon.pdf’ was too big to
duplicate (> 10MB). Therefore, the task ended in ‘Warning’ state (due to exitValue=1 in the
code) and added an entry in the task details.

5
Automation Engine

17

6
Automation Engine

18

6. Scripting for Script Runner on Windows

A Script Runner on Windows supports Windows Script and Batch File. We recommend Windows
Script for its scripting abilities comparable to batch files, its wider range of supported features and
the simpler syntax. Windows Script is plain-text VBScript or JScript which is interpreted and run by
the Windows Script Host.

6.1 Using Windows Script on Script Runner

1. Open a text editor and add the following code:

Function Main The function that will be called by the Script
Runner. Script Runner executes only the
code in this main function.

inputs First argument of main function: a list of
input file paths(type: list of strings).

outputFolder Second argument of the main function:
the folder where AE expects the script’s
result files. AE will continue the flow with
the files you write in this folder. If you leave
this folder empty, AE will continue the flow
with the inputs of the Run Script task (type:
string).

params Third argument of the main function:
additional script parameters injected into
the script via the Run Script ticket (type: list
of strings).

WScript.Echo This puts some extra log info in the Run
Script task details and log. This call prints
text to the Console and adds a newline
character without Script Runner context.

6
Automation Engine

19

Main = “OK” This will communicate with the Run Script
task that everything went fine. Other
possibilities are Main = “Warning” and
Main = “Error”.

2. You can test this script locally by adding the following code: Save this file. Open command
prompt. Change the directory to the script’s parent directory. Run command ‘cscript
MyHelloWorld.vbs’.

This will produce the output ‘Hello, World!’ to the console. The Script Runner does not attend to
the test code in your script. It will execute the contents of the main function and ignore the rest.
Therefore, you can keep your test code for future local testing.

3. Open the Automation Engine Pilot. Go to Files view where you can select a file and open a New
Task. Choose the Run Script task, modify its settings and launch the task.

6
Automation Engine

20

Note that the ‘Hello, World!’ in the task details and ‘OK’ state are corresponding with
WScript.Echo “Hello, World!” and Main = “OK” in the script.

6
Automation Engine

21

6.1.1 Using Windows Script On Script Runner: A Sample Case

In this example, we use Windows Script to copy every input file with a size smaller than the size
specified in the script parameters to the output folder.

We can use inputs, outputFolder and params in the AppleScript to achieve our objective. First,
we demonstrate how to duplicate files without the size restriction and then proceed with the actual
use case.

1. Open a text editor and add the code given below. This code is aimed to iterate through the list of
inputs. It enables you to handle the inputs one by one, via the ‘input’ variable.

2. You can modify the Script as given below to duplicate the files to a specified output folder without
size restrictions. Save this code as a text file with ‘.vbs’ extension (VBScript) in the Windows

6
Automation Engine

22

Script folder of Script Runner (default: C:\Esko\bg_data_fastserverscrrunnt_v100\Scripts
\WindowsScript) or in the Automation Engine WindowsScript folder.

3. Add the file size check in the code as given below. This will duplicate the file when the input file
size is smaller than the maximum size from the script parameters. If this condition is not met it
will add an entry in the log and there will be "Warning". Save the file.

6
Automation Engine

23

4. Open the Automation Engine Pilot. Go to Files view where you can select the files to be copied
and open a New Task. Choose the Run Script task, modify its settings and launch. This modified
ticket will duplicate every selected file which is smaller than 10MB to the current job’s Script
Output folder. In this example, we excuted this task for two files(Blairon.pdf: 22MB and Dansk
Droge.pdf: <1MB).

6
Automation Engine

24

‘Dansk Droge.pdf’ is duplicated into the job’s Script Output folder. ‘Blairon.pdf’ was too big to
duplicate (> 10MB). Therefore, the task ended in ‘Warning’ state and added an entry in the task
details.

6
Automation Engine

25

6.2 Using Batch File for Scripting on Windows

In this example, we use Batch File to copy every input file with a size smaller than the size specified
in the script parameters to the output folder.

1. Open a text editor and add the code given below. This code is aimed to iterate through the list
of inputs. It enables you to handle the inputs one by one, via the command %1 (the script’s first
argument) will contain a string of input file paths, separated by ‘;’.

2. You can modify the Script as given below to duplicate the files to a specified output folder
with a size check. Save this code as a text file with ‘. bat ’ extension in the Script Runner
Batch File Folder (default: C:\Esko\bg_data_fastserverscrrunnt_v100\Scripts\BatchFile) or in
the Automation Engine BatchFile folder.

6
Automation Engine

26

%1 First batch file argument: the Run Script
task’s inputs. A string of input file paths,
separated by ‘;’.

%2 Second batch file argument or output
folder: the folder where AE expects the
script’s result files. AE will continue the flow
with the files you write in this folder. If you
leave this folder empty, AE will continue the
flow with the inputs of the Run Script task.

%3, %4,%5… Remaining batch file arguments: additional
script parameters, injected into the script
via the Run Script ticket.

6
Automation Engine

27

Exit value Ending Status of the task

0 OK

1 Warning

2 Error

3. Open the Automation Engine Pilot. Go to Files view where you can select the files to be copied
and open a New Task. Choose the Run Script task, modify its settings and launch. This modified
ticket will duplicate every selected file which is smaller than 10MB to the current job’s Script
Output folder. In this example, we excuted this task for two files(Blairon.pdf: 22MB and Dansk
Droge.pdf: <1MB).

‘Dansk Droge.pdf’ is duplicated into the job’s Script Output folder. ‘Blairon.pdf’ was too big to
duplicate (> 10MB). Therefore, the task ended in ‘Warning’ state and added an entry in the task
details.

7
Automation Engine

28

7. Using ExtendScript on Script Runner(On
MacOS/Windows)

A Script Runner supports direct interpretation of ExtendScript by the Adobe Creative Suite (CS)
application selected in the Run Script ticket.

ExtendScript is JavaScript extended for Adobe CS applications. Adobe provides a complete
integrated development environment (IDE) for programming ExtendScript which is the ExtendScript
Toolkit (ESTK). Latest versions of the ESTK are available with the Creative Suite. For more info and
Adobe scripting resources visit the Adobe Scripting Center.

1. Open the ExtendScript Toolkit and add following code. Save this code in the Script Runner’s
ExtendScript folder. The default location is : /Library/Scripts/Esko/ExtendScript for a Script
Runner on Mac OS or C:\Esko\bg_data_fastserverscrrunnt_v100\Scripts\ExtendScript on
Windows. Alternatively, you can save them in the ExtendScript folder of Automation Engine.

Main This function will be called by the Script
Runner. Only the code in this main function
gets executed.

Inputs First argument of main function: a list of
input file paths (type: list of strings).

outputFolder Second argument of the main function:
the folder where AE expects the script’s
result files. AE will continue the flow with
the files you write in this folder. If you leave
this folder empty, AE will continue the flow
with the inputs of the Run Script task (type:
string).

7
Automation Engine

29

params Third argument of main function: additional
script parameters, injected into the script
via the Run Script ticket. (type: list of
strings)

$.writeln This writes extra log information in the Run
Script task details and log. Without Script
Runner context this call prints text to the
Console, and adds a newline character.

alert This registers some extra log info in the Run
Script task details and log. Without Script
Runner context this call displays an alert
box.

return “OK”; This will communicate with the Run Script
task that everything went fine. Other
possibilities are Return = “Warning”
and Return = “Error”.

2. To test the script locally in the ExtendScript Toolkit, add following code, save and run.

Note that the alert box pops up and the ‘Hello, World!’ and ‘OK’ result in the Console.

7
Automation Engine

30

The Script Runner does not attend to the test code in your script. It will execute only the contents
of the main function and ignore the rest. Therefore, you can keep your test code for future local
testing.

3. Open the Automation Engine Pilot. Go to Files view where you can select a file and open a New
Task. Choose the Run Script task, modify its settings and launch the task.

Note that the ‘Hello, World!’ in the task details and ‘OK’ state are corresponding with
$.writeln("Hello World!") and Return = “OK” in the script.

7
Automation Engine

31

7.1 Using ExtendScript on Script Runner: A Sample Case.

In the following example we are going to use ExtendScript to Open a file in Illustrator and print it
using a Print Preset.

Note: When you use ExtendScript on Windows, you can avoid troubles while accessing your user
specific settings such as Adobe applications' Presets , Actions etc by stopping the Script Runner
service and running it as an application for the logged in user (who also defined Adobe settings).

Open Start > All Programs > Esko > Automation Engine Script Runner > Preferences .

Stop the Script Runner and uncheck Start at login (which actually means ‘Start as service’) and
Close Preferences.

Start as a console application by double clicking its executable: Script Runner’s program folder>
\bin_ix86\egscrrun.exe (e.g.C:\Esko\bg_prog_fastserverscrrunnt_v120\bin_ix86\egscrrun.exe)

Note: To prevent having to start up the Script Runner every time you log in, add its executable to
your user’s/system’s Startup Items.

1. Define a My Print Preset in your Adobe Illustrator application.

2. Open the ExtendScript Toolkit and add following code. This code is aimed to iterate through the
list of inputs. It enables you to handle the inputs one by one, via the input variable.

3. To print every input file using a Print Preset from the script parameters of the Run Script task,
write the code as below. Save this code in the default ExtendScript folder(of Script Runner or
Automation Engine).

7
Automation Engine

32

4. Open the Automation Engine Pilot. Go to Files view where you can select a file and open a New
Task. Choose the Run Script task, modify its settings and launch the task.

Launching this ticket will result in the selected Illustrator files being printed using the Print Preset
specified as script parameters (My Print Preset) in the task.

8
Automation Engine

33

8. Appendix : Script Samples

Note:

Sample scripts are provided as-is with no warranty of fitness for a particular purpose. These scripts
are solely intended to demonstrate techniques for accomplishing common tasks. Additional script
logic and error-handling may need to be added to achieve the desired results in your specific
environment.

It is up to the user to verify that his intended use of the offered automation functionality is compliant
with any third party license agreement and/or other restrictions applicable to any non-Esko products.

8.1 AppleScript Code Samples

MyHelloWorld.applescript

on main(inputs, outputFolder, params)
 log "Hello, World!"
 return "OK"
end main
on run
 -- Our main function is not using any of its arguments, so provide empty ones
 set inputs to {} -- empty list
 set outputFolder to "" -- empty string
 set params to {} -- empty list
 main(inputs, outputFolder, params)
end run

MyDuplicate.applescript

on main(inputs, outputFolder, params)
 set returnValue to "OK"

 -- Translate the output folder (UNIX path) into an AppleScript file
 reference
 set outputFolderReference to POSIX file outputFolder

 -- Get the maximum size from the script parameters and convert from megabyte
 to bytes
 set maxSize to (item 1 of params) * 1000000

 -- Iterate through the list of inputs
 repeat with input in inputs
 -- Translate the input (UNIX path) into an AppleScript file reference
 set inputReference to POSIX file input

 -- Get the size of the input
 set inputSize to size of (info for inputReference)

 -- Check wether the input is OK to duplicate

8
Automation Engine

34

 if inputSize < maxSize then
 -- Duplicate input to output folder
 tell application "Finder" to duplicate inputReference to
 outputFolderReference with replacing
 else
 log input & " is too big to duplicate"
 set returnValue to "Warning"
 end if
 end repeat

 return returnValue
end main

8.2 Shell Script Code Sample

MyCopy.sh

#!/bin/bash

Split up the input file paths into a list
via the Internal Field Separator (IFS)
OLDIFS=$IFS # Always keep the original IFS
IFS=":" # Now set it to ':'
Split up '$1' into the 'inputs' variable, with ':' as separator
inputs=($1)
IFS=$OLDIFS # Restore the original IFS

inputCount=${#inputs[@]}

Get the output folder
outputFolder=$2

Get the maximum size from the script parameters
and convert from megabyte to bytes
maxSize=`expr $3 * 1000000`

exitValue=0

Iterate through the list of inputs
for ((i=0; i<${inputCount}; i++));
do
 input=${inputs[$i]}
 # Get the size of the input
 inputSize=`ls -l "$input" | awk '{print $5}'`

 # Check wether the input is OK to copy
 if [$inputSize -lt $maxSize]; then
 # Copy input to output folder
 cp -f "$input" "$outputFolder"
 else
 echo "$input is too big to duplicate"
 exitValue=1
 fi
done

exit $exitValue

8
Automation Engine

35

8.3 Windows Script Code Samples

MyHelloWorld.vbs

Function Main(inputs, outputFolder, params)
 WScript.Echo "Hello, World!"
 ' Set the function's return value.
 Main = "OK"
End Function

' Our main function is not using any of its arguments,
' so provide empty ones.
Dim inputs()
Dim outputFolder
Dim params()
Main inputs, outputFolder, params

MyCopy.vbs

Function Main(inputs, outputFolder, params)
 Dim returnValue
 returnValue = "OK"

 ' Get the maximum size from the script parameters
 ' and convert from megabyte to bytes.
 Dim maxSize
 maxSize = params(0) * 1000000

 ' Create the file system object that is going to do the copying.
 Dim filesys
 Set filesys = CreateObject("Scripting.FileSystemObject")
 WScript.Echo "File system object created"

 ' Iterate through the list of inputs.
 For Each input In inputs
 ' Turn the input path into a file object.
 Dim inputReference
 Set inputReference = filesys.GetFile(input)

 ' Check wether the input is OK to copy.
 If inputReference.Size < maxSize Then
 ' Copy input to output folder.
 Dim outputFile
 outputFile = outputFolder & "\" & filesys.GetFileName(input)
 filesys.CopyFile input, outputFile
 Else
 WScript.Echo input & " is too big to copy"
 returnValue = "Warning"
 End If
 Next

 ' Set the function's return value.
 Main = returnValue
End Function

8
Automation Engine

36

8.4 Batch File Code Sample

MyCopy.bat

@echo off
rem First script argument contains the input file paths
set inputs=%1
rem Trim surrounding quotes
for /f "usebackq tokens=*" %%a in ('%inputs%') do set inputs=%%~a

rem Get the output folder
set outputFolder=%2

rem Get the maximum size from the script parameters
rem and convert from megabyte to bytes
set /a maxSize=%3*1000000

set exitValue=0

rem Iterate through the input file paths which are separated by ';'
:ITERATE_INPUTS
if "%inputs%"=="" goto EXIT
for /f "tokens=1 delims=;" %%a in ("%inputs%") do call :HANDLE_INPUT "%%a"
for /f "tokens=1* delims=;" %%a in ("%inputs%") do set inputs=%%b
goto ITERATE_INPUTS

:HANDLE_INPUT
rem Get the size of the input
for %%? in (%1) do set inputSize=%%~z?
rem Check wether the input is OK to copy
if %inputSize% lss %maxSize% (
 rem Copy input to output folder
 copy /y %1 %outputFolder%
) else (
 echo %1 is too big to copy
 set exitValue=1
)
goto :eof

:EXIT
exit %exitValue%

8.5 ExtendScript Code Samples

MyHelloWorld.jsx

function main (inputs, outputFolder, params) {
 $.writeln ("Hello, World!");
 alert ("Another way to say: Hello, World!");
 return "OK";
}
// Our main function is not using any of its arguments, so you can test
 main without arguments
main ();

8
Automation Engine

37

MyPrint.jsx

function main(inputs, outputFolder, params) {
 // First and only script parameter is the print preset.
 var printPreset = params[0];

 var returnValue = "OK";

 // Iterate through the list of inputs.
 for (i=0; i<inputs.length; i++)
 {
 var input = inputs[i];

 try
 {
 // Open the input file.
 var myDocument = app.open(File(input), DocumentColorSpace.CMYK);
 // Create print options and set the print preset.
 var options = new PrintOptions();
 options.printPreset = printPreset;
 // Print the document.
 myDocument.print(options);
 // Close the document without saving.
 myDocument.close(SaveOptions.DONOTSAVECHANGES);
 }
 catch (e)
 {
 // Log problem info and set the return value to "Warning".
 $.writeln("Problem while printing " + input);
 $.writeln("Name: " + e.name);
 $.writeln("Message: " + e.message);
 returnValue = "Warning";
 }
 }

 return returnValue;
}

	Contents
	1. Scripting
	2. Automation Engine Script Runner
	3. Installing Script Runner
	4. Configuring Script Runner
	5. Scripting for Script Runner On Mac OS.
	5.1 Using AppleScript on Script Runner
	5.1.1 Using AppleScript On Script Runner: A Sample Case

	5.2 Using Shell Script on Script Runner

	6. Scripting for Script Runner on Windows
	6.1 Using Windows Script on Script Runner
	6.1.1 Using Windows Script On Script Runner: A Sample Case

	6.2 Using Batch File for Scripting on Windows

	7. Using ExtendScript on Script Runner(On MacOS/Windows)
	7.1 Using ExtendScript on Script Runner: A Sample Case.

	8. Appendix : Script Samples
	8.1 AppleScript Code Samples
	8.2 Shell Script Code Sample
	8.3 Windows Script Code Samples
	8.4 Batch File Code Sample
	8.5 ExtendScript Code Samples

	Index

